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Abstract Abrupt phenomena in modelling real-world systems such as chemical
processes indicate the importance of investigating stiff systems. However, it is difficult
to get the solution of a stiff system analytically or numerically. Two such types of
stiff systems describing chemical reactions were modelled in this paper. A numerical
method was proposed for solving these stiff systems, which have general nonlinear
terms such as exponential function. The technique of dealing with the nonlinearity
was based on the Wavelet-Collocation method, which converts differential equations
into a set of algebraic equations. Accurate and convergent numerical solutions to the
stiff systems were obtained. We also compared the new results to those obtained by
the Euler method and 4th order Runge–Kutta method.

Keywords Wavelet · Collocation method · Stiff system · Numerical solution ·
Chemical reaction model

1 Introduction

Chemical reaction engineering aims at exploitation of chemical reactions on a commer-
cial scale. Its goal is the successful design and operation of chemical reactors. Reaction
engineering problems require solutions of highly nonlinear equations, which are not
always amenable to analytical solution [6]. This has motivated wide applications of
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various numerical methods for the problems. The most popular numerical methods
are the Euler method and fourth order Runge–Kutta method [8]. Since the considered
problem of chemical reactions is a relatively stiff problem, the relative magnitude of
the concentration changes quite sharply. Therefore, it is important to reduce the step
size until the desired accuracy is obtained for all the numerical methods posed for
solving the reaction problems. However, this will increase the computation demand
significantly. This motivates the development of innovative methods for numerical
computing of the systems more accurately and effectively.

Wavelet based methods are a good candidate for stiff systems. In this area, some
methods have been posed recently to improve the accuracy of the numerical solutions
of the nonlinear equations. Examples are the Haar-wavelet method for stiff systems
[4], Wavelet-Galerkin method for population balance equations [2], and Wavelet-
Collocation method for breakage equation with boundary conditions [1,5]. Generally,
the Galerkin method gives better accuracy than the collocation method [7]; however,
it is somewhat intractable for nonlinear problems especially for general nonlinearity
such as the exponential function. The main difficulty lies on the computing of the
connection coefficients [2,10]. If the Galerkin method is involved for solving the
problem with the general nonlinearity, then after the wavelet transformation we can
hardly get a set of neat algebraic equations.

In this paper, we will develop a Wavelet-Collocation method, which was originally
developed by Bertoluzza [1] for dealing with the boundary condition problems, for
numerically solving two types of mathematical models of chemical reactions. Taking
advantages of the trail function from the collocation method, the developed method
can handle the general nonlinearity quite easily.

The paper is organized as follows. We model two types of chemical reactions in
Sect. 2. In Sect. 3, the wavelet-collocation method is briefly introduced, which was
originally posed by [1] for solving the two-point boundary problem; and then a new
method is developed to solve the initial condition problems mentioned in Sect. 2.
Section 4 carries out numerical studies to illustrate the developed method. Finally,
Sect. 5 concludes the paper.

2 Modelling chemical reactions

In this section we are going to briefly introduce two chemical reaction models from
[8] and [9], respectively, which will be used as the test problems in Sect. 4.

2.1 Non-isothermal batch reactor

The nonisothermal batch reactor is operated adiabatically, which contains a liquid
reaction mixture with the following reaction occurs:

A(l)
r−→ P(l)

where r = kCA and
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k = k0 exp

(
− E

RT

)

CA is the concentration of A, E is the activation energy for the reaction, R is the
gas constant, and T is the absolute temperature. If the reactor is perfectly mixed, the
unsteady-state mole balance for component A is given by

dn A

dt
= VR(−r) = −VRk0 exp

(
− E

RT

)
CA.

Noticing that the reactor volume, VR , is constant and CA = n A/VR , we have the
following equation

dCA

dt
= −k0CA exp

(
− E

RT

)
. (1)

The unsteady-state energy balance equation is given by

ρVRC p
dT

dt
= −�HR X N r VR, (2)

where ρ is the density of the reaction mixture, C p is the average heat capacity of
the reaction mixture, and �HR X N is the heat of reaction, which is a function of
temperature. Let K1 = −k0, K2 = −�HR X N k0

ρC p
. Then Eqs. 1 and 2 read as the following

dCA

dt
= K1CA exp

(
− E

RT

)
, (3)

dT

dt
= K2CA exp

(
− E

RT

)
(4)

where T = T0 and CA = CA0 initially.

2.2 The Robert problem

The Robert problem describes the kinetics of an autocatalytic reaction, which was first
proposed by Robertson [9]. If the mass action law is applied for the rate functions, the
following mathematical model can be set up

y′
1 = −k1 y1 + k3 y2 y3

y′
2 = k1 y1 − k2 y2

2 − k3 y2 y3

y′
3 = k2 y2

2

, (5)

where ki , i = 1, 2, 3 are the rate constants, and yi , i = 1, 2, 3 are the concentrations
of three chemical species involved. This problem is very popular in numerical studies
and often is used as a test problem for the stiff integrators comparisons.
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3 Wavelet-Collocation method

3.1 Collocation method

The collocation method is also called the residual method. It is a widely used method
for numerical solutions of ordinary and partial differential equations although it is not
as accurate as the Galerkin method.

Consider the following problem

Lu(x) = f (x, t)

where L is a differential operator. Let us define the residual R as the following

R = Lu − f

Now approximate the u(x) as the sum of trial functions wk

u(x) =
n∑

k=1

ukwk

and substitute this approximation into the equation of the residual R above. Then we
try to adjust the coefficients uk to make R = 0. Generally speaking, it is not realistic to
get this point for all the values of x . However, we might be able to choose n collocation
points where we have R(xk) = 0, k = 1, . . . , n.

Normally, we define the trial functions as the Dirac delta function

wk = δ(x − xk) =
{

1, x = xk,

0, otherwise
(6)

3.2 Wavelet-based collocation method

The wavelet-based collocation method was initially posed by Bertoluzza [1] to deal
with the Dirichlet boundary value problem

Lu = f ∈ (0, 1),

u(0) = a,

u(1) = b,

where the authors defined the following trial function

θ(n) =
∫ ∞

−∞
φ(x)φ(x − n)dx, n ∈ Z,

by the integral of the product of two scaling functions, φ(·), constructed by Daubechies
[3]. φ(·) has a compact support [0, L − 1]. Considering the boundary conditions, they
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approximated the unknown function u(x) by j level wavelet series expansion as the
following form

u j (x) = u(0)

k=0∑
k=−∞

θ(2 j x − k) +
2 j −1∑
k=1

u j (xk)θ(2 j x − k) + u(1)

∞∑
k=2 j

θ(2 j x − k),

which verifies u j (0) = a, u j (1) = b, and Au j (xn) = f (xn), n = 1, . . . , 2 j − 1.
This method is stable and convergent according to [1].

3.3 Wavelet Collocation method for the initial value problem in [0, 1]

Now, let us switch the focus to the initial value problem (IVP) in the finite interval
[0, D] with D = 1. We have the following scheme for numerically solving the IVP
based on Bertoluzza’s method.

Consider the following system

Lu = f ∈ [0, 1],
u(0) = a

(7)

where L is a differential operator and f is a nonlinear function in the interval [0, 1].
Redefine the functions as the following for k = 1, . . . , 2 j − 1

θ̃ j,k(x) = θ j,k(x), θ̃ j,0(x) =
0∑

l=−∞
θ j,l(x), θ̃ j,2 j (x) =

∞∑
l=2 j

θ j,l(x), (8)

with θ j,l = θ(2 j x − l), where the new function θ̃ j,k still have the similar proper-
ties to that of θ j,k . Noticing that the compact support of the trial function, θ(x), is
[1 − L , L − 1], the last two functions of Eq. 8 have the following form

θ̃ j,0(x) =
0∑

l=1−L

θ j,l(x), θ̃ j,2 j (x) =
2 j +L−1∑

l=2 j

θ j,l(x). (9)

By the definition of Eqs. 8 and 12, we can approximate the solution of the initial value
problem (7) by

u j (x) = aθ̃ j,0(x) +
2 j∑

k=1

u j,k θ̃ j,k(x), (10)
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where u j,k are the coefficients to be determined. Let θ(n)(x) = dnθ(x)
dxn be the nth

derivative of function θ(x). Then from Eq. 10, we have

u(n)
j (x) = 2nj

⎛
⎝aθ̃

(n)
j,0 (x) +

2 j∑
k=1

u j,k θ̃
(n)
j,k (x)

⎞
⎠ . (11)

Substituting Eqs. 10 and 11 into Eq. 7, and the collocation discretization scheme
give a set of algebraic equations

Lu j (xl) = f (xl , u j (xl)), l = 1, . . . , 2 j

which determine the values of the coefficients u j,k .

3.4 Wavelet Collocation method for the initial value problem in [0, D]

If D > 1 and is an integer, there are two schemes for the initial value problem. Consider
system (7) again, and here we use the interval [0, D] instead of the original one [0, 1].

The first scheme is based on the one we mentioned in Sect. 3.3. The only thing to
be done here is to transfer the interval, [0, D] into a unit interval, [0, 1], by scaling
transformation. And then we can apply the method mentioned in Sect. 3.3. This is
an easy way for us to apply, where we approximate the unknowns by a higher level
wavelet series expansion in the interval we consider after a scaling transformation. In
this case, we need to make some modifications to the original equations; actually, it
is to multiply a constant from the scaling transformation, to one side of the equation.
However, this may increase the stiffness in the problem we are considering.

In order to overcome this shortcoming, we would like to work out the following
scheme for solving the IVP. Since D is an integer, we can divide the entire interval into
D sub-unit intervals. In each subinterval, we approximate the unknowns by a wavelet
series expansion of some level. Generally, we can get the similar accuracy solutions
by a lower level wavelet expansion in this scheme. Precisely, we define the following
trial functions for the second scheme for k = 1, . . . , 2 j D − 1 under j level wavelet
approximation

θ̃ j,k(x) = θ j,k(x), θ̃ j,0(x) =
0∑

l=1−L

θ j,l(x), θ̃ j,2 j D(x) =
2 j D+L−1∑

l=2 j D

θ j,l(x). (12)

instead of that defined in Eq. 8.
If D > 1 is not an integer, we may convert it into an integer first by a scaling

transformation, or use the the first scheme mentioned above.
In the following section, we are going to apply both schemes to the nonlinear

systems we modelled in Sect. 2.
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4 Numerical studies

4.1 Application to the nonisothermal batch reactor

Consider the initial value problem described by Eqs. 3 and 4 with the time interval
[0, 1]. Let us set the values of the model parameters as the following for the noniso-
thermal batch reactor

CA0 = 1.0, T0 = 300◦K, E/R = 300◦K

K1 = −0.1 s−1, K2 = 1.0◦K

gmole−s
,

(13)

and take L = 6 and j = 8, then we have the numerical solutions obtained by the
wavelet-collocation method (WCM) posed in Sect. 3.3, Euler method (EM) and 4th
order Runge–Kutta method (RKM). The results are plotted in Fig. 1 for comparisons
with the exact solution.

4.2 Application to the Robertson problem

In this section, we will apply the wavelet-based collocation method for numerical sol-
ving the Robertson problem. For numerical computing purpose, we set the parameters
as the following values:

k1 = 0.04, k2 = 104, k3 = 3 × 107

and the initial conditions as y1(0) = 1, y2(0) = y3(0) = 0.
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Fig. 1 Comparisons of solutions obtained by EM, RKM and WCM
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Fig. 3 Comparison of solution y2 obtained by EM, RKM and WCM

Comparisons between the Eular method (EM), Runge–Kutta method (RKM) and
wavelet-collocation method (WCM) are shown in Figs. 2–4, respectively. The step-size
and computing time, which is execution on a 1.80 GHz Pentium IV running Windows
2002 Professional, are shown in Table 1.

If we increase the step-sizes for Eular method or 4th Runge–Kutta method, the
computing time will decrease. However, the numerical solutions will be unstable, see
Figs. 5–7.

If the numerical solutions are computed based on the second scheme proposed
in Sect. 3.4, we will see that the results are almost similar to those obtained by the
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Fig. 4 Comparison of solution y3 obtained by EM, RKM and WCM

Table 1 Comparisons of CPU
time and step-size

Method Stepsize or level of wavelet CUP time (s) Results

EM 5.5000e-04 460.241 Good
EM 5.7000e-04 (EM) 461.393 Bad
RKM 7.0000e-04 (RKM) 1634.150 Good
RKM 8.0000e-04 (RKM) 1153.365 Bad
WCM1 j = 7 199.036 Good
WCM2 j = 2 647.161 Good
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Fig. 7 Comparison of solution y3 obtained by EM and RKM

method posed in Sect. 3.3 (see Figs. 8–10), but there is a need for longer computing
time (Table 1). However, the solution near the stiff part is better than the first method,
see Fig. 9.

5 Conclusion

The main task of this paper is to develop a wavelet-based method for numerical solving
the processes from the chemical engineering, which involve in the multi-equation
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Fig. 9 Comparison of solution y2 obtained by WCM1 and WCM2

nonlinear problem with the general nonlinearity. Stable and accurate numerical results
are obtained as shown from the given figures.

As mentioned in the previous sections, the Galerkin method has a better accuracy
for numerically solving the differential equations. However, it is hard to be develo-
ped to deal with the nonlinear problems, especially for the problems with general
nonlinearities such as the exponential function. On the contrary, it is so easy for the
wavelet-based collocation method to do so.

Both the Euler method and 4th order Runge–Kutta method are the good choice for
numerically solving the nonlinear system mentioned in the previous section, however,
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it is very necessary to reduce the step size to 0.02 s in order to get the desired accurate
results since the concentration CA changes quickly during the 100 s reaction in the
nonisothermal batch reactor model. In the Robert problem, the step size must be
reduced to less than 5.5 × 10−4 for Euler method and 7 × 10−4 for Runge–Kutta
method, which results in a longer computing time.

We have noticed that we can get better numerical solutions for the stiff systems.
However, benefits have not been observed for using wavelet-based method for regular
systems.

We have also noticed that there is a possibility to improve the accuracy of the
numerical solutions by increasing the value of j .

Further work is continuing to demonstrate more achievements of wavelet methods
for solving problems encountered in chemical/process engineering systems.
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